
Journal of Sound and <ibration (2000) 236(1), 23}31
doi:10.1006/jsvi.2000.2965, available online at http://www.idealibrary.com on
DAMPING EFFECT OF A RANDOMLY EXCITED
AUTOPARAMETRIC SYSTEM

W. K. LEE

Department of Mechanical Engineering, >eungnam ;niversity, Gyongsan 712-749, Korea

AND

D. S. CHO

Institute of Industrial ¹echnology, >eungnam ;niversity, Gyongsan 712-749, Korea

(Received 12 July 1999, and in ,nal form 12 January 2000)

An investigation into the modal interaction of an autoparametric system under
a broadband random excitation is made. The speci"c system examined is an autoparametric
vibration absorber with internal resonance, which is typical of many common structural
con"gurations. By means of Gaussian closure scheme the dynamic moment equations
explaining the random responses of the system are reduced to a system of autonomous
ordinary di!erential equations of the "rst and second moments. In view of equilibrium
solutions of this system and their stability we examine the system responses. We could not
"nd the destabilizing e!ect of damping, which was observed by Ibrahim and Roberts (1977;
Zeitschrift fu( r Angewandte Mathematik and Mechanik 57, 643}649).
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1. INTRODUCTION

Modal interactions of harmonically excited non-linear systems with internal resonance
have been studied extensively [1}12]. These systems have been known to exhibit
complicated behaviors such as jump and saturation phenomenon, Hopf bifurcations and
a sequence of period-doubling bifurcations leading to chaos [4}12]. In the meantime,
Ibrahim and his colleagues [13}21] have studied in#uences of internal resonance on
responses of randomly excited non-linear systems. For example, Ibrahim and Roberts
[15, 19] and Roberts [20] included cubic non-linear terms in the analysis for systems with
1 :2 internal resonance, and the destabilizing e!ect of a damping ratio was observed [19].
This destabilizing e!ect is a notable observation because the stabilizing e!ect of damping
has been known as a generally accepted idea for resonance responses.

The motive of this study is to check the existence of destabilizing e!ect of damping. We
selected an autoparametric vibration absorber [4] under a broadband random excitation
as Ibrahim and Roberts [19] did. Obtaining moment equations from the Fokker}Planck
equation corresponding to the equation of motion, we used Gaussian closure
scheme to reduce a system of 14 autonomous ordinary di!erential equations for the "rst
and second moments. We examined the equilibrium solution of this system and its
stability.
0022-460X/00/360023#09 $35.00/0 ( 2000 Academic Press



Figure 1. Schematic diagram of an autoparametric absorber system.
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2. EQUATIONS OF MOTION

Figure 1 shows the autoparametric system under a broadband random excitation F (t).
The equations of motion of the system [4] are, for the main mass,
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where x and y are normal co-ordinates corresponding to the linearized system. Introducing
the notations
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we have the non-dimensionalized equations as follows:
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In the above equations, dot and prime denote di!erentiation with respect to t and
q respectively.



DAMPING EFFECT OF AUTOPARAMETRIC SYSTEM 25
Eliminating the non-linear acceleration terms and neglecting the fourth and higher orders
of non-linear terms we have
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Random excitation =(q) is assumed to be zero-mean white noise having the
autocorrelation function
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where 2D represents the spectral density when we express the frequency by f ("u/2n), and
d(Dq) is the Dirac delta function.

3. MOMENT EQUATIONS BY GAUSSIAN CLOSURE SCHEME

Introducing the notations
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and letting= (q) be a formal derivative of a Brownian process, i.e.,=(q)"dB (q)/dq, we can
express equations (6) and (7) in the form of the Ito( stochastic equation:
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The solution process of this equation is a Markov process and the Fokker}Planck equation
may be applied for the Markov vector X in the form
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where p (x, q) is the joint probability density function, and a
i
(x, q) and b

ij
(x, q) are the "rst

and second incremental moments of the Markov process X(q). These are de"ned as follows:
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From equations (9), a
i
and b

ij
are evaluated as follows:
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Since it is impossible to obtain the exact solution p (x, q) to the Fokker}Planck equation, we
are trying to examine the system responses by means of moment equations. First of all,
introducing the following notations for the nth order moments of the system responses,
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with n"a#b#c#g, we can derive a set of dynamic moment equations of any order by
multiplying equation (10) by xa
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Equation (14) constitutes a set of in"nite coupled equations. In other words, the di!erential
equation of order n contains moment terms of order n#1 and n#2. The Gaussian closure
is based on the assumption that the response process is nearly Gaussian and is carried out
by setting third and fourth order cumulants to zero. The third and fourth order moments
can be expressed in terms of lower order moments as follows [21, 22]:
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Substituting equations (15) and (16) into equations (14) we can obtain a system of 14
di!erential equations for 14 "rst and second order moments. For convenience, the system is
expressed as follows:
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In order to investigate the stability of the equilibrium solution, we let
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If real parts of all eigenvalues of the Jacobian matrix are negative, the solution m
0
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considered asymptotically stable.

From equations (14) and (17) we can see that system (17) has the following equilibrium
solution:
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and all other moments are zero. This equilibrium solution tells that the autoparametric
vibration absorber undergoes the main system motion (X) with no cantilever motion
(>"0); in other words the motion is unimodal. The mean square for X and X@ are same
and they are proportional to D and inversely proportional to f

1
.

4. NUMERICAL RESULTS

First of all, we solve numerically the algebraic equation (18) to ascertain that solution (20)
is the only equilibrium solution. When the solution becomes unstable, we investigate the
long-term behavior of the moments by integrating numerically the ordinary di!erential
equation (17). Figure 2 shows how the mean-square values of the steady state motion
depend on the frequency ratio r"u

2
/u

1
when mass ratio, R is equal to 0)2 and 0)15. In

Figures 2(a) and 2(b), two horizontal lines far from r"0)5 imply that the corresponding
response is a stationary process, because the mean-square values are independent of q as
well as r. The results showing the facts that the main system motion excited directly does not
encourage the cantilever motion and the responses by a stationary excitation are stationary,
coincide with the response characteristics of linear systems. According to the stability
analysis, the equilibrium solution loses the stability at r

b1
and r

b2
by Hopf bifurcations

which occur when the Jacobian matrix of equation (19) has a simple pair of pure imaginary
eigenvalues and no other eigenvalues with zero real parts. Therefore, in the region of



Figure 2. Limits of mean-square responses as functions of the frequency ratio r (f
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r
b1
(r(r

b2
, the moments can have the long-term behaviors such as periodic,

quasi-periodic, and chaotic. In the "gures the upper and lower limits of two moments are
shown. These results show that the energy has been transferred from the main system
motion excited directly to the cantilever motion not excited directly. Since the mean-square
values of this motion vary between both the limits, the response is non-stationary. Due to
the internal resonance condition (r"0)5) strengthening the couplings between the
non-linear terms, the system response shows the response characteristics of non-linear
systems. Decreasing the mass ratio, R leads to an increase in the cantilever motion.
However bifurcation points, r

b1
and r

b2
, are never changed according to varying mass

ratio, R.
Figure 3 represents time histories of mean-square values of the system response at the

steady state. Figures 3(a) and 3(b) show the non-stationary (r"0)5) and stationary
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(r"0)58) processes respectively. Each of the mean-square values E[X2] and E[>2] is
oscillating with twice the corresponding mode natural frequency. This coincides with the
fact that square of a harmonic function is oscillating with twice its frequency.

Figures 4 and 5 show how the system dampings a!ect Hopf bifurcation points in 2D}r
planes, for f

2
"0)01 and f

1
"0)005 respectively. The "gures show that stable regions

expand as the system damping ratios increase. The result of Figure 4 contradicts Ibrahim
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and Roberts' statement [19] saying &&increase of the primary system damping ratio appears
to have a destabilizing e!ect''. Normalizing the mean-square displacement of the primary
system, they could not avoid the constraint D"2f

1
, which might cause them to

misunderstand the in#uence of the damping ratio f
1

on the stability.

5. CONCLUSIONS

In order to investigate the in#uences of the internal resonance on the system responses of
a two-degree-of-freedom system with a random excitation, we examined an autoparametric
vibration absorber with a broadband random excitation to the main mass. The stability
regions in the parameter space are expanded as the system dampings increase. This is
a remarkable contrast with Ibrahim and Roberts' observation [19]. We believe that their
misunderstanding is due to the normalization procedure of the analysis.
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